Comprehensive Analysis of Codon Usage Bias in Seven Epichloë Species and Their Peramine-Coding Genes
نویسندگان
چکیده
Codon usage bias plays an important role in shaping genomes and genes in unicellular species and multicellular species. Here, we first analyzed codon usage bias in seven Epichloë species and their peramine-coding genes. Our results showed that both natural selection and mutation pressure played a role in forming codon usage bias in seven Epichloë species. All seven Epichloë species contained a peramine-coding gene cluster. Interestingly, codon usage bias of peramine-coding genes were not affected by natural selection or mutation pressure. There were 13 codons more frequently found in Epichloë genome sequences, peramine-coding gene clusters and orthologous peramine-coding genes, all of which had a bias to end with a C nucleotide. In the seven genomes analyzed, codon usage was biased in highly expressed coding sequences (CDSs) with shorter length and higher GC content. Genes in the peramine-coding gene cluster had higher GC content at the third nucleotide position of the codon, and highly expressed genes had higher GC content at the second position. In orthologous peramine-coding CDSs, high expression level was not significantly correlated with CDS length and GC content. Analysis of selection pressure identified that the genes orthologous to peramine genes were under purifying selection. There were no differences in codon usage bias and selection pressure between peramine product genes and non-functional peramine product genes. Our results provide insights into understanding codon evolution in Epichloë species.
منابع مشابه
Identification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene
Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...
متن کاملGenome-Wide Analysis of Codon Usage Bias in Epichloë festucae
Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichlo...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملCodon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis
Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...
متن کاملDisparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species.
Peramine is an insect-feeding deterrent produced by Epichloë species in symbiotic association with C3 grasses. The perA gene responsible for peramine synthesis encodes a two-module nonribosomal peptide synthetase. Alleles of perA are found in most Epichloë species; however, peramine is not produced by many perA-containing Epichloë isolates. The genetic basis of these peramine-negative chemotype...
متن کامل